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Abstract

Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human

salmonellosis. Recently, an antibiotic-resistant strain of this serovar was implicated in a large 2011 multistate outbreak resulting

from consumption of contaminated ground turkey that involved 136 confirmed cases, with one death. In this study, we assessed

the evolutionary diversity of 44 S. Heidelberg isolates using whole-genome sequencing (WGS) generated by the 454 GS FLX

(Roche) platform. The isolates, including 30 with nearly indistinguishable (one band difference) Xbal pulsed-field gel electrophoresis

patterns (JF6X01.0032, JF6X01.0058), were collected from various sources between 1982 and 2011 and included nine isolates

associated with the 2011 outbreak. Additionally, we determined the complete sequence for the chromosome and three plasmids

from a clinical isolate associated with the 2011 outbreak using the Pacific Biosciences (PacBio) system. Using single-nucleotide

polymorphism (SNP) analyses, we were able to distinguish highly clonal isolates, including strains isolated at different times in the

same year. The isolates from the recent 2011 outbreak clustered together with a mean SNP variation of only 17 SNPs. The S.

Heidelberg isolates carried a variety of phages, such as prophage P22, P4, lambda-like prophage Gifsy-2, and the P2-like phage

which carries the sopE1 gene, virulence genes including 62 pathogenicity, and 13 fimbrial markers and resistance plasmids of the

incompatibility (Inc)I1, IncA/C, and IncHI2 groups. Twenty-one strains contained an IncX plasmid carrying a type IV secretion system.

On the basis of the recent and historical isolates used in this study, our results demonstrated that, in addition to providing detailed

genetic information for the isolates, WGS can identify SNP targets that can be utilized for differentiating highly clonal S. Heidelberg

isolates.
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Introduction

Disease caused by nontyphoidal serotypes of Salmonella

enterica is the leading cause of food-related death in the

United States (Scallan et al. 2011). Salmonella enterica sup-

species (supsp.) enterica serovar Heidelberg (S. Heidelberg) has

been among the most frequently isolated serovars in clinical

cases of salmonellosis, causing an estimated 84,000 illnesses

in the United States annually (Foley et al. 2011; Han et al.

2011). It is frequently isolated from poultry and poultry

meat (Zhao et al. 2008). S. Heidelberg was the seventh

most common serovar isolated from humans in 2011 (CDC

2013) and was found in chicken breast, ground turkey, and

eggs, the main sources of S. Heidelberg infections (Chittick

et al. 2006; NARMS 2010). S. Heidelberg also tends to be

associated with invasive diseases such as septicemia and myo-

carditis (Wilmshurst and Sutcliffe 1995). After S. enterica

supsp. enterica serovar Typhimurium (S. Typhimurium),

S. Heidelberg is the serovar of Salmonella most often associ-

ated with Salmonella-related deaths in the United States

(Kennedy et al. 2004; Patchanee et al. 2008; Crump et al.

2011). The National Antimicrobial Resistance Monitoring

System (NARMS), which is responsible for monitoring antimi-

crobial resistance in Salmonella estimated that 65% of the

S. Heidelberg isolates from ground turkey in 2010 were resis-

tant to �3 antimicrobial classes. Presently, the antimicrobial

agents to which this serovar is most commonly resistant are

ceftriaxone (a drug of choice for treatment), along with resis-

tance to streptomycin, tetracycline, sulfamethoxazole, chlor-

amphenicol, and trimethoprim-sulfamethoxazole (NARMS

2010).

The Centers for Disease Control and Prevention (CDC) in-

vestigated a multistate (34 states) outbreak of antimicrobial-

resistant S. Heidelberg infections comprised of 136 confirmed

cases between February 27 and September 13, 2011. Among

the 94 case patients for which there was available informa-

tion, 37 (39%) had been hospitalized and one patient died.

Collaborative investigative efforts by state and federal officials

implicated ground turkey as the source of this outbreak, and

as a result, 36 million pounds of ground turkey meat were

recalled (CDC 2011; Folster et al. 2012).

Recently, our investigative capabilities have been greatly

enhanced with the development and increasing feasibility of

whole-genome sequencing (WGS) as a molecular epidemio-

logical tool to complement current foodborne outbreak inves-

tigation techniques. WGS is of particular interest because it

provides definitive data for distinguishing outbreak isolates

from nonoutbreak isolates in common and highly clonal pop-

ulations (Allard et al. 2012, 2013). In this study, we sought to

determine how effectively WGS and single nucleotide poly-

morphisms (SNPs) analysis would differentiate outbreak iso-

lates of S. Heidelberg from nonoutbreak isolates that share the

same Xbal and BlnI pulsed-field gel electrophoresis (PFGE) pat-

terns. Using WGS data and virulence assays, we also wanted

to determine whether the outbreak isolates belonged to a

new strain with potentially higher pathogenicity or whether

these isolates were typical members of a common PFGE type

present in retail poultry. In addition, the data show the role of

transmissible mobile genetic elements in the evolution of vir-

ulence and resistance among S. Heidelberg.

Materials and Methods

Bacterial Strains, Growth Condition, and Characterization

Isolates were chosen for the study based on similarity or dis-

similarity by PFGE to S. Heidelberg isolated from a large

ground turkey-associated outbreak in 2011 (supplementary

fig. S1, Supplementary Material online) (CDC 2011; Folster

et al. 2012). Forty-four isolates of S. Heidelberg were included

in the study (table 1). Isolates were obtained from animal

(n¼9), retail meat (n¼27), and human clinical (n¼7) sources

in the United States, and one of the isolates was obtained

from an unknown sample source in Brazil. Four isolates

were collected from 1982 to 1987; 38 of the isolates were

collected from 2002 to 2011, and collection dates for two of

the isolates were unknown. Five of the isolates were from the

Salmonella Reference Collection A (SARA) (Beltran et al.

1991), and nine of the isolates were collected in the course

of the investigation of a ground turkey-associated outbreak in

2011 (Folster et al. 2012).

Salmonella isolates were cultured on trypticase soy agar

(TSA; Becton, Dickinson, NJ) and in trypticase soy broth

(TSA; Becton) overnight at 37 �C. All isolates used for WGS

were serotyped by conventional methods and tested for anti-

microbial susceptibility according to the NARMS standard pro-

tocol as previously described (Zhao et al. 2008). Antimicrobial

susceptibility testing, using a panel consisting of 15 antimicro-

bial agents (amikacin, ampicillin, amoxicillin-clavulanic acid,

cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxa-

cin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfi-

soxazole, tetracycline, and trimethoprim-sulfamethoxazole)

was performed according to the NARMS methodology with

the Sensititre automated antimicrobial susceptibility system

(Trek Diagnostic Systems, Westlake, OH). Isolate antimicrobial

resistance was determined by comparison of MICs to values

established MICs by the Clinical and Laboratory Standards

Institute (CLSI). PFGE was performed according to the CDC

PulseNet protocol (http://www.cdc.gov/pulsenet/pathogens/

index.html, last accessed April 23, 2014). Genomic DNA of

each strain was isolated from overnight cultures using DNeasy

Blood and Tissue Kit (Qiagen, CA). All S. Heidelberg isolates

were stored in TSB containing 15% glycerol at �80 �C.

Genome Sequencing, Assembly, and Annotation

We performed shotgun sequencing of the 44 S. Heidelberg

using the Genome Sequencer FLX 454 (Roche, Branford, CT)

and the GS FLX Titanium Sequencing Kit XLR70 according to

the manufacturer’s protocol to generate an average genome
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coverage of 23�. De novo assemblies were performed using

Roche’s Newbler software (v.2.6) with the resulting contigs

being annotated using the NCBIs Prokaryotic Genomes

Automatic Annotation Pipeline (Klimke et al. 2009).

Using DNA from the 2011 clinical outbreak isolate 41578,

we also sought to close the genome using the Pacific

Biosciences (PacBio) sequencing platform. Specifically, we pre-

pared a single 10-kb library that was sequenced using the C2

chemistry on eight single-molecule real-time cells with a 90-

min collection protocol on the PacBio RS. The 10-kb continu-

ous-long-read data were de novo assembled using the PacBio

hierarchical genome assembly process/Quiver software pack-

age, followed by Minimus 2, and they were polished with

Quiver.

Comparative and Phylogenetic Genome Analysis

For comparative analysis, in addition to the 44 isolates se-

quenced in this study, we included sequence data available

for S. Heidelberg SL476 complete genome (NC_011083), two

plasmids (NC_011081 and NC_011082), and the whole-

genome shotgun sequence for S. Heidelberg SL486

(ABEL00000000) at the NCBI genome database.

Phylogenetic informative SNP sites (i.e., SNPs shared by two

or more strains in the alignment) were identified by two dif-

ferent methods. The first involved mapping the 454 reads to

the complete reference genome of S. Heidelberg strain SL476

using Roche Newbler software GS Reference Mapper (v.2.8.).

SNP sites were then found using the SNP calling function of

GS Reference Mapper. SNP positions were defined, where

one or more isolates differed from strain SL476 with coverage

�10� and with �95% of the reads containing the SNP after

having filtered out the SNPs from homopolymer artifacts, fol-

lowed by a custom pipeline to construct a SNP matrix (Allard

et al. 2013). S. Heidelberg SL486 could not be included in this

analysis as its raw sequence data were not available. The

second SNP detection method was a reference free k-mer-

based approach implemented in the program kSNP

(Gardner and Slezak 2010). This is a collection of Perl scripts

that aggregate the results from Jellyfish v1.1.3 (used for k-mer

counting) (Marcais and Kingsford 2011) and MUMmer v3.22

(used to align k-mers and detect variable positions) (Kurtz

et al. 2004). Analyses with kSNP were based on a k-mer

length of 25.

To construct evolutionary relationships among the isolates,

the maximum-likelihood (ML) method was implemented in

the Genetic Algorithm for Rapid Likelihood Inference

(GARLI) software (Zwickl 2006b). GARLI analyses were per-

formed using a web service (Bazinet and Cummings 2011)

that uses a special programming library and associated tools

(Bazinet et al. 2007). All ML trees were constructed with

GTR+I+G nucleotide substitution model. The 100 replicate

runs of the nonbootstrapped data set were conducted to

identify the most probable phylogeny based on our observed

SNP matrix. We determined branch support by performing

1,000 bootstrap replicates.

We elucidated the relationships among isolates using the

Bayesian clustering method implemented in STRUCTURE

v2.3.2 (Pritchard et al. 2000; Falush et al. 2003). The analyses

were based on the kSNP matrix, and we ran ten replicate

analyses at K¼2–9 under the admixture model with corre-

lated allele frequencies being performed and visualized with

DISTRUCT v1.1. (Rosenberg 2004). Each independent run

consisted of 50,000 generations serving as burnin followed

by 100,000 generations. The �K statistic (Evanno et al. 2005)

was used to identify the k value that best fits the data. Pairwise

genetic distances, calculated as the number of nucleotide dif-

ferences, were generated in MEGA5 (Tamura et al. 2007).

Core genes were identified using the UCLUST algorithm

(Edgar 2010) using 95% sequence identity as the cutoff.

Alignments of core genes were accomplished using

MUSCLE with default settings; these alignments were then

used to identify variable core genes.

Prediction of Prophages, Plasmids, Resistance, and
Virulence Genes

Prophages were identified using PHAST (Zhou et al. 2011).

Sequences for intact phages were extracted from the original

contig, in which they were found and mapped against the

entire assembled data to determine whether the phage was

present in an isolate at multiple sites on different contigs.

Contigs that could not be aligned to the reference genome

were evaluated using BLAST to identify plasmids. The plasmids

were analyzed by comparative analysis using MAUVE algo-

rithm (Darling et al. 2010) and with the comparative analysis

tools of RAST (Aziz et al. 2008). For plasmid closure, a con-

catenated sequence was generated from a 500-bp sequence

from each end of the contig. This artificial sequence from the

single contig of the plasmid in study was used as a reference

to map all the 454 raw reads, using runMapping from

Newbler. If there were mapped reads that covered the con-

junction point in the reference, the contig was a closed

plasmid.

To determine the incompatibility (Inc) groups for plasmids,

we used BLAST to find sequences described by Johnson and

Nolan (2009) for specific Inc groups that would produce the-

oretical PCR amplicons for known Inc group sequences.

Resistance and virulence genes were identified by mapping

sequence data available at an in-house database, consisting

of 1,379 resistance genes, and 107 previously characterized

virulence genes (84 pathogenicity and 23 fimbrial markers;

Huehn et al. 2009). Using a presence/absence matrix of

genes conferring resistance to antibiotics and disinfectant

agents, we constructed a similarity tree based on binary dis-

tances under neighbor-joining algorithm for tree construction;

topological support was assessed based on 100 bootstrap
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replicates. The analyses were performed using the R package

ape (Paradis et al. 2004; Liu et al. 2011).

Caenorhabditis elegans Assay

Pathogenicity was evaluated using the Caenorhabditis elegans

survival assay. Caenorhabditis elegans strain SS104 glp-4 (bn2)

was acquired from the Caenorhabditis Genetics Center.

Worm cultures were maintained at 16 �C, which is the per-

missive temperature for this temperature-sensitive sterile

mutant of C. elegans. Strains were cultured in C. elegans hab-

itation media (CeHM) in tissue culture flasks on a platform

shaker (Sprando et al. 2009). Nematodes were bleached

(0.5 M NaOH, 1% hypochlorite) to collect eggs, which were

incubated in M9 media for 24 h to bring them to synchronized

L1 stage and then transferred to CeHM. To produce synchro-

nized L4 stage worms, L1 worms were grown for an addi-

tional 72 h in CeHM.

Pathogen lawns for survival assays with test strains, as well

as the food bacteria OP50, were prepared by inoculating

Nematode Growth Media (in 6-cm Petri plates) with 50ml of

an overnight bacterial culture. Plates were incubated over-

night at room temperature before worms were added. We

used 60–80 synchronized L4 worms for each treatment

group. Worms were scored every 24 h for survival (Aballay

et al. 2000).

Animal survival was plotted using Kaplan–Meier survival

curves and analyzed by log rank test using GraphPad Prism

(GraphPad Software, Inc., La Jolla, CA). Survival assays were

repeated at least two times. Survival curves resulting in

P values< 0.05 relative to control were considered signifi-

cantly different.

Results

Antimicrobial Resistance and PFGE

Two representative isolates from the 2011 ground turkey-as-

sociated outbreak were previously reported to be resistant to

ampicillin, gentamicin, streptomycin, and tetracycline (Folster

et al. 2012). Antimicrobial susceptibility testing of seven addi-

tional representative isolates showed resistance to ampicillin,

gentamicin, and tetracycline among six; and streptomycin,

tetracycline, and kanamycin resistance in one of the isolates.

The susceptibility and PFGE (Xbal and BlnI) results for all nine of

the outbreak representative isolates included in this study and

the reference isolates (table 1) are shown in supplementary

figure S1, Supplementary Material online. The nine outbreak

associated isolates exhibited indistinguishable, or nearly indis-

tinguishable (one band difference), Xbal PFGE patterns

JF6X01.0032 or JF6X01.0058, and BlnI pattern JF6A26.0076

and one food isolate had Xbal PFGE pattern JF6X01.0058 and

BlnI pattern JF6A26.0017. Of the 35 isolates not associated

with the outbreak, 15 had composite Xbal/BlnI PFGE patterns

indistinguishable from ground turkey outbreak isolates

whereas 20 isolates had composite XbaI/BlnI PFGE patterns

�98% similar to isolates from the 2011 outbreak (supplemen-

tary fig. S1, Supplementary Material online). Nine reference

isolates showed the same PFGE pattern, as well as the same

antibiotic resistance profile, noted for most of the outbreak

isolates (supplementary fig. S1, Supplementary Material

online).

Draft Genome Size

Shotgun sequencing produced 44 draft genomes with an av-

erage coverage of 23� and a minimum of 4,700 genes. The

genomic size of the 44 S. Heidelberg isolates (including

extrachromosomal DNA) ranged from 4.671 to 5.130 Mb

(fig. 1). Differences in genomic size were due primarily to

the presence or absence of mobile genetic elements, including

phages and plasmids, especially the carriage of IncHI2 or IncA/

C plasmids (fig. 1). Next to the genome size variation, figure 1

shows the estimated N50 sizes within S. Heidelberg draft

genome sequences. The estimated N50 value is a rough esti-

mate of the quality and coverage of the draft genomes, and it

represents the average contig size after assembly with the

Newbler software.

Phylogenetic Relationships among S. Heidelberg Using
SNP Analysis

Phylogenetically informative SNP sites were identified using

two independent methods. Figure 2 shows a ML tree based

on SNP analysis of 44 S. Heidelberg isolates mapped to

strain SL476. Among the collective 40,716 variable SNPs

identified, 12,187 were determined to be “informative”

(i.e., SNPs shared by at least two isolates). The ML tree

shown in figure 2 clearly demonstrates that S. Heidelberg

formed a monophyletic group distinct from the outgroup

comprised Salmonella enterica supsp. enterica serovar

FIG. 1.—The number of assembled bases (Mb) and N50 contig size

(kb) for each sequenced S. Heidelberg isolate. Samples are colored accord-

ing to the presence of antimicrobial resistance plasmids. No antimicrobial

resistance plasmid, filled triangles; antimicrobial resistance Inc-I plasmid,

filled diamonds; antimicrobial resistance Inc-H1/2 plasmid, filled circles;

antimicrobial resistance plasmid Inc-I and H1/2, filled circles with borders;

antimicrobial resistance plasmid Inc-AC, filled squares; antimicrobial resis-

tance plasmid IncI and Inc-AC, filled squares with borders.
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Newport (S. Newport) and S. Typhimurium. The SNP diver-

gence between S. Heidelberg and the two outgroups,

S. Newport and S. Typhimurium, is 24,724 and 24,305

SNPs, respectively. The resultant tree shows two more inter-

esting points. First, isolates having a similar Xbal PFGE pattern

(supplementary fig. S1, Supplementary Material online) clus-

tered together. Second, there is a tendency for isolates to

cluster based on date of collection, such as noted for isolates

from 2003, 2008, and 2011. In addition, the 2011 clinical and

food isolates that were originally thought to be associated

with the ground turkey outbreak isolated in different states

clustered together with 80% bootstrap support (fig. 2), which

could indicate that they are all members of a clonal commu-

nity likely derived from the same source. Consistent with the

trend for temporally isolated strains to cluster closely together,

one isolate, N29341, that was isolated in Minnesota in 2011

from ground turkey by NARMS, clustered tightly together

with the outbreak isolates received from CDC, whereas all

other reference isolates having the same PFGE pattern not

associated with the ground turkey outbreak are distinct

from the isolates of the 2011 outbreak (fig. 2). These results

suggest that N29341 might be epidemiologically related to

the 2011 outbreaks strains, as Minnesota was one of the

states involved in that outbreak.

The SNP matrix, including the same S. Newport and

S. Typhimurium outgroups, built using the k-mer strategy of

kSNP consisted of 41,432 variable SNP positions with 10,873

being informative. Using the k-mer strategy, we identified 716

FIG. 2.—ML tree based on SNP analysis of 44 S. Heidelberg isolates and previously reported S. Heidelberg genome sequences SL476 (12). A total of

40,716 variable SNPs with 12,187 being informative were found using GS Reference Mapper followed by a custom pipeline. The ML tree was generated in

GARLI v.2.0 (Zwickl 2006a) under the GTR+� model of nucleotide evolution and visualized using Figtree v1.3.1. Parameter space was searched for the best

tree with simultaneous estimation for model parameters using a ML search. The best tree was identified from 100 runs on the nonbootstrapped data set.

Measures of clade confidence are reported below each node in the form of bootstrap values (1,000 iterations). Bootstrap values<70% were not shown. The

tree was rooted using S. Newport 637564 and S. Typhimurium AZ057. The taxa of source for each isolate, geographic location, and date were mapped onto

the tree. Prophage observations are further depicted on the tree using colored bars, shown on the right.
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more SNPs than were noted within the in-house pipeline,

where 40,716 variable SNPs were observed. Notably, the

SNP diversity within the highly clonal S. Heidelberg isolates

was lower, only 4,053 SNPs were found with 1,394 being

informative. The resulting ML tree (fig. 3) was well resolved

and congruent with the tree topology in figure 2. To show

that the tree topology is not an artifact of mobile elements

that are not present in all isolates, we constructed a kSNP

matrix using SNPs present only on core genes. This produced

a matrix of 24,447 SNPs, of which 7,630 were informative and

present in genes shared by all 46 S. Heidelberg isolates and the

two outgroups. Only 718 SNPs, with 284 being informative,

were found in genes shared only by S. Heidelberg isolates. The

SNP matrix of the core genes was used to construct a ML

phylogenetic tree (supplementary fig. S2, Supplementary

Material online), which also confirms the tree topology in

figures 2 and 3.

In this study, we determined that all 46 S. Heidelberg iso-

lates, including S. Heidelberg SL476 and S. Heidelberg SL486,

partitioned into three paraphyletic groups, each having 100%

FIG. 3.—ML tree based for the 44 S. Heidelberg isolates and two previously reported S. Heidelberg genome sequences SL476 and SL486 (Fricke et al.

2011). A total of 4,053 SNPs with 1,394 being informative were found based on k-mer analysis using kSNP. ML trees were generated as described in figure 2.

Bootstrap values (1,000 iterations) are reported below each node. The numbers of unambiguous substitutions that mapped to the tree only once and are

greater than zero are given above each node in blue. The numbers in parenthesis represent the nodes in table 3. To the right of the tree, two Distruct plots

were reconstructed with the same SNP matrix—one including all 46 S. Heidelberg isolates and, adjacent to that, another with only those isolates from group

3—to present a fine-scale structure is shown. The Distruct plot was generated using a model-based Bayesian clustering method implemented in Structure

v2.3.2 and visualized with DISTRUCT v1.1. 10 replicate analysis at K¼ 2–9 under the admixture model with correlated allele frequencies were performed.

Each independent run consisted of 50,000 generations serving as burnin followed by 100,000 generations. Different colors represent the different clusters

and each bar represents an individual isolate. The fraction of the bar that is a given color represents the coefficient of membership to that cluster (e.g.,

multicolored bars indicate membership to multiple groups indicative of admixture).
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bootstrap support (fig. 3). Group 1 contains three historical

isolates (two clinical and one turkey isolate) with a PFGE pat-

tern, for which there was no assigned Pulse-Net designation

(supplementary fig. S1, Supplementary Material online).

Group 2 is comprised of 11 isolates, including clinical, food,

and animal isolates, with XbaI PFGE pattern JF6X01.0022, as

well as the isolates SL476 and N19992 having different XbaI

patterns JF6X01.0133 and JF6X01.0326, respectively. Group

3 is composed of 30 isolates from food, animal, and clinical

sources, including the outbreak isolates, all having a very sim-

ilar XbaI pattern (JF6X01.0032, JF6X01.0034, JF6X01.0058).

The distribution of PFGE patterns on the tree topology

based on SNPs differs between the two enzymes XbaI and

BlnI. For example, N19992 (group 2) and N18393 (group 3)

are quite distinct on the ML tree, even though both have the

same BlnI pattern JF6A26.0015 and are adjacent to each

other on the PFGE dendrogram (supplementary fig. S1,

Supplementary Material online). Pairwise SNP variation be-

tween the three distinct S. Heidelberg lineages seen in

figure 3 are presented in table 2 and support the phylogenetic

partitions revealed above. Mean divergence among the three

clades ranged from 200 to 712 nt differences, whereas the

mean intragroup nucleotide differences ranged from 47 to

155 (table 2).

Notably, the mean SNP variation within the outbreak iso-

lates is only 17 SNPs. The phylogenetic analysis clustered the

outbreak isolates together even though the PFGE profile (sup-

plementary fig. S1, Supplementary Material online) is slightly

different (XbaI pattern JF6X01.0032, JF6X01.0058; BlnI pat-

tern JF6A26.0017 and JF6A26.0076). For example, isolates

41578 and 41579, sharing the same PFGE and antibiotic re-

sistance profile with isolates N19871, N18413, N18440, and

N18453 (isolated in 2008), are more closely related to the

other outbreak isolates, even though they have a different

XbaI pattern. We also found that the outbreak isolates

41578 and 41579 are quite distinct from isolates N19871,

N18413, N18440, and N18453, which have 44 SNPs that

allow complete discrimination between the two groups

(fig. 3). Furthermore, isolate 41565, which has the same

PFGE and antibiotic resistance profile as the 2003 isolates

32507, 24393, and 20752, is more closely related to the

other isolates associated with the 2011 outbreak, even with

having a different BlnI pattern and antibiotic resistance profile

(fig. 3).

To provide an additional picture as to the number of distinct

groups the sampled serovars segregate into, we constructed

groups using the program STRUCTURE, the results of which

were visualized using DISTRUCT (fig. 3). The results are con-

sistent with the groupings formed through the phylogenetic

analyses in that there are three distinct groups (each repre-

sented by a different color [fig. 3]).

Differences between Outbreak Isolates and Nonoutbreak
Isolates in Group 3

To further investigate the relationships among outbreak iso-

lates, we constructed the Distruct plot for group 3. Within that

group, there is support for four subgroups; these four groups

also are found in the phylogenetic analysis, each with a�75%

bootstrap support. Pairwise SNP variation between the four

sublineages also support the phylogenetic partitions described

above (table 2 and fig. 3). Mean divergence among the four

subclades ranged from 36 to 153 nt differences, whereas the

mean intragroup nucleotide differences ranged from 15 to 30

(table 2). The 2008 strains seem to have quite a unique SNP

profile when compared with the remaining isolates of group

3. The ML tree, the Distruct plot, and the pairwise SNP varia-

tion show the evolutionary changes occurring among isolates

from 2003 to 2009 and 2011, revealing the apparent emer-

gence of the genetically unique S. Heidelberg strain that was

responsible for the 2011 outbreak.

Table 2

(Mean Pairwise Distance (Number of Nucleotide Differences) between the (A) Three Major S. Heidelberg Groups in figure 3 and the (B) Four

S. Heidelberg Subgroups from Group 3 in figure 3

S. Heidelberg Gr. 1 S. Heidelberg Gr. 2 S. Heidelberg Gr. 3

(A)

S. Heidelberg Gr. 1 155a

S. Heidelberg Gr. 2 535 101a

S. Heidelberg Gr. 3 712 200 47a

Gr. 3/I Gr. 3/II Gr. 3/III Gr. 3/IV

(B)

S. Heidelberg Gr. 3/I n/c

S. Heidelberg Gr. 3/II 144 30a

S. Heidelberg Gr. 3/III 139 42 15a

S. Heidelberg Gr. 3/IV 153 46 51 27a

Outbreak isolates 151 46 65 36

aIntragroup mean pairwise distance (number of nucleotide differences).
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Table 3 lists variable genes having unique nucleotide sub-

stitutions which defined specific sublineages that could be

used to separate them from other highly clonal

S. Heidelberg isolates in group 3. Table 3 also lists their SNP

change and, if applicable, the gene carrying the SNPs and the

resulting amino acid change. Twenty-three unique SNPs, with

14 being nonsynonymous (i.e., causing an amino acid change)

SNPs, were found to be unique to group 3 and clustering

together isolates with XbaI pattern (JF6X01.0032,

JF6X01.0034, JF6X01.0058). These nucleotide substitutions

were found on 20 different genes that could be useful for

subtyping of strains belonging to group 3 (table 3 and fig. 3).

Furthermore, 24 unique SNPs (11 being nonsynonymous)

were found at the node that characterizes the 2008 ground

turkey isolates, which seemed to have their own unique SNP

profile distinct from that of the remaining group 3 isolates.

Twelve of the 24 SNPs are located on the insertion sequence

(IS) 2 element with five SNPs being within the IS2 TnpA trans-

posase and seven SNPs on the IS2 TnpB transposase genes

(table 3 and fig. 3).

Importantly, two nonsynonymous SNPs were found to be

only present in all isolates associated with the 2011 outbreak.

These two SNPs were located within two different variable

core genes: a putative hydrolase with amino acid change

P653Q, and the gluconate transporter GntP gene with

amino acid change L187V (table 3 and fig. 3). Five SNPs,

with four being nonsynonymous, were unique to isolates

41563, 41566, 41567, 41573, 42578, 41579, and N29341

(associated to the outbreak) and not observed in 41565

(table 3 and fig. 3). From these five SNPs, three were in plas-

mid sequences, whereas two were found on variable core

genes: the flagellin CDS resulting in an amino acid change

from threonine to serine at position 282 (�T282S), and

within a putative hypothetical protein (possibly functioning

as H+ gluconate symporter related to permeases) producing

an amino acid change from glycine to serine at position 358

(�G358S) (table 3).

Genetic Variation among S. Heidelberg

At a minimum, 273 genes involved in a variety of different

functions, such as DNA replication and repair, cell division,

transcription, metabolism, and virulence, vary among the

S. Heidelberg isolates observed in clinical, animals, and/or

food samples, including the isolates associated with the

2011 outbreak. The variable core genes, including the

number of SNPs and haplotypes are listed in supplementary

table S1, Supplementary Material online. Figure 4 shows a

histogram comparing strains based on: 1) the number of

SNPs according to the number of core genes and 2) the hap-

lotype diversity according to the number of core genes. Only a

few mutation “hotspot” genes, such as tailspike (35 SNPs),

scaffolding protein (22 SNPs), DNA polymerase V subunit

umuD (20 SNPs), phage lysozyme (18 SNPs), gifsy-2 prophage

protein (15 SNPs), terminase small subunit (14 SNPs), outer

membrane lipoprotein Blc (7 SNPs), and alpha amylase

(6 SNPs), were found to have a disproportionate number of

SNPs that could be useful for rapid subtyping the serovar

Heidelberg and/or as targets of resequencing. Interestingly,

although these genes have several SNPs, the haplotype diver-

sity is fairly low, with only a few haplotypes (2–4) among 46

isolates being identified. This fact suggests that, even though

there are genes with up to 35 SNPs, there are only two to four

unique sequences among S. Heidelberg that are congruent

with our tree topology for three different groups of

S. Heidelberg.

Complete Genome from Clinical Isolate 41578

In the course of performing this study, we demonstrated that

it was possible to rapidly determine the complete sequence for

the chromosome and three plasmids from a clinical isolate

associated with the 2011 outbreak using the Pacific

Biosciences (PacBio) system. A single contig of 4,793,479 bp

(GC content 52.2%) representing the complete chromosome

and three contigs of 4,773 bp, 35,297 bp, and 117,929 bp

representing three plasmids were generated. The chromo-

some contains 12 different Salmonella pathogenicity islands

and four prophages (prophage P22, lambda-like prophage

Gifsy-2, prophage P4, and prophage P2-like; fig. 5). The larg-

est plasmid pSEEH1578_01 is a resistance plasmid with incom-

patibility group IncI1 encoding the resistance to gentamicin

(aacC), streptomycin (aadA1), tetracycline (tetA, tetR(A)),

and ampicillin (blatem1) (fig. 5). The plasmid pSEEH1578_02

is a VirB/D4 plasmid that carries the type IV secretion system

(T4SS; fig. 5), and plasmid pSEEH1578_03 is a mobilization

plasmid that carries genes capable of promoting plasmid mo-

bilization such as mbeA, mbeB, mbeC, and mbeD.

Identification of Prophages

PHAST analysis identified six different phages among the

S. Heidelberg isolates. Only those phages that PHAST deter-

mined as being intact were further analyzed. All 44 isolates

contained prophage P22 and lambda-like prophage Gifsy-2.

Group 1, which was composed of three historical isolates

(SARA 39, SARA 37, and 82-2052), also contained prophage

Fels-2, not observed in any of the group 2 or group 3 isolates.

Additionally, SARA 37 and 82-2053 also contained prophage

ST64B (table 1 and fig. 2).

Heidelberg isolates belonging to group 3, which includes

the 2011 outbreak isolates, contained prophage P4 and P2-

like, neither of which was seen in any of the isolates from

group 1 and 2, excepting isolate N19992, a group 2 isolate

that was confirmed to contain the P2-like prophage (table 1

and fig. 2). The phage presence and absence matrix shows

correlation with the tree phylogeny shown in figure 2.

Hoffmann et al. GBE

1054 Genome Biol. Evol. 6(5):1046–1068. doi:10.1093/gbe/evu079 Advance Access publication April 14, 2014

,
, 
,
,
while 
variation 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu079/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu079/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu079/-/DC1
A
B
'
'
s
-
which 
clinical 
isolate 
3 
-
) (
Type 
)
 (
prophages
comprised 
,
,


Table 3

Antibiotic Resistance and Plasmid Characteristics of S. Heidelberg Isolates Used in This Study

Node on Tree SNP Location NT Change AA Change NT Position Locus Tag

1 D-Mannonate oxidoreductase A!G D!G 839 SEEHRA37_03221

1 Translocation protein TolB T!A P 1152 SEEHRA37_24108

1 Glutathione S-transferase C!A W!Stopp 233 SEEHRA37_20055

1 Nonannotated C!T R!C n/a SEEHRA37_contig25

1 Hypothetical protein/putative transcriptional regulator G!T V!F 376 SEEHRA37_19825

1 Ureidoglycolate dehydrogenase AllD C!T T!I 20 SEEHRA37_20355

1 Starvation-inducible outer membrane lipoprotein C!T S 63 SEEHRA37_07830

1 ATPase recombination and repair protein G!T L 966 SEEHRA37_05779

1 DNA-specific endonuclease I A!C K!T 341 SEEHRA37_19810

1 Scaffolding protein C!A V 135 SEEHRA37_21903

1 Peptidase T G!T V!L 976 SEEHRA37_13506

1 Predicted metal-dependent membrane protease C!A A 108 SEEHRA37_15707

1 Hypothetical protein A!G N!D 418 SEEHRA37_04201

1 Glycine/serine hydroxymethyltransferase GlyA T!G S!A 145 SEEHRA37_00365

1 Preprotein translocase subunit SecF G!A A 534 SEEHRA37_22413

1 Hypothetical protein A!G T!A 1879 SEEHRA37_01714

1 Ribosomal protein L21 RplU A!C I!L 220 SEEHRA37_20845

1 Nonannotated C!G Q!E n/a SEEHRA37_contig19

1 Isoaspartyl peptidase C!T A!V 380 SEEHRA37_16329

1 Lysine-N-methylase C!T G 57 SEEHRA37_07110

1 Hypothetical protein T!C L 162 SEEHRA37_23678

1 Hypothetical protein A!C K!T 227 SEEHRA37_07475

1 Nonannotated T!C I!V n/a SEEHRA37_contig14

2 Hypothetical protein A!G Q!R 851 SEEHRA37_20355

2 Sensor kinase DpiB A!T I!F 67 SEEHRA37_10675

2 Notannotated C!T P 63 SEEHRA37_contig6

2 Hypothetical protein G!A F n/a SEEHRA37_contig6

2 Nonannotated G!A G!S n/a SEEHRA37_contig5

2 Proline dehydrogenase PutA C!A G 975 SEEHRA37_04036

2 Electron transport complex protein RnfC T!C I 276 SEEHRA37_02971

2 Protein involved in chromosome partitioning MukB G!C G!A 1514 SEEHRA37_14706

2 N-ethylmaleimide reductase A!T G 351 SEEHRA37_02866

2 Hypothetical protein C!T L 1039 SEEHRA37_16509

2 Multidrug efflux system subunit MdtC A!T Q!H 2067 SEEHRA37_00060

3 Putrescine/spermidine ABC transporter ATPase

protein PotA

G!T P!Q 47 SEEHRA37_13511

3 Pilus assembly protein, porin PapC G!T R!S 4 SEEHRA37_18324

3 IS2 repressor TnpA G!A T 93 SEEH8393_18082

3 IS2 transposase TnpB A!G T 195 SEEH8393_18077

3 IS2 transposase TnpB A!G N!D 502 SEEH8393_18077

3 IS2 transposase TnpB G!A A 483 SEEH8393_18077

3 Not annotated (plasmid sequence) T!C A!V n/a SEEH8393_contig56

3 IS2 repressor TnpA C!T Y 309 SEEH8393_18082

3 IS2 repressor TnpA A!G E 195 SEEH8393_18082

3 IS2 transposase TnpB C!A V 525 SEEH8393_18077

3 IS2 transposase TnpB C!A P 192 SEEH8393_18077

3 IS2 transposase TnpB A!G A 789 SEEH8393_18077

3 YacA T!G V 123 SEEH8393_01004

3 Hypothetical protein G!A A!T 232 SEEHRA37_09669

3 Multifunctional fatty acid oxidation complex

subunit alpha FadJ

G!T M!I 2094 SEEHRA37_15762

(continued)
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Identification of Virulence Genes among S. Heidelberg

From the 107 known and recognized Salmonella-associated

virulence genes, we identified 62 pathogenicity and 13 fim-

brial markers that were highly conserved among the 44

S. Heidelberg isolates (supplementary table S2, Supplementary

Material online). One outer membrane fimbrial usher gene,

safC, was only found in the three historical isolates (SARA 39,

SARA 37, and 82-2052), all belonging to group 1. All other

Table 3 Continued

Node on Tree SNP Location NT Change AA Change NT Position Locus Tag

3 tRNA uridine 5-carboxymethylaminomethyl

modification enzyme GidA

G!A G!S 1199 SEEHRA37_11040

3 Permease DsdX C!A A!D 1166 SEEHRA37_02334

3 IS2 transposase TnpB T!C R 549 SEEH8393_18077

3 IS2 repressor TnpA C!T A 225 SEEH8393_18082

3 IS2 transposase TnpB C!A P!T 319 SEEH8393_18077

3 IS2 repressor TnpA C!T L 102 SEEH8393_18082

3 Arginyl-tRNA synthetase ArgS A!T G 237 SEEHRA37_07325

3 Nonannotated C!A A!N n/a SEEHRA37_contig18

3 Hypothetical protein G!A D!N 103 SEEHRA_37_05617

4 Not annotated G!A V!L n/a SEERA37_contig2

4 Sodium/glucose cotransporter G!A S!N 1037 SEERA37_14011

5 Phosphoserine phosphatase C!A P!Q 653 SEEHRA37_11265

5 Gluconate transporter GntP C!G L!V 187 SEEHRA37_18800

6 Flagellin and related hook-associated proteins G!C T!S 282 SEEHRA37_18390

6 Electron transfer flavoprotein, beta subunit G!A G!S 358 SEEHRA37_02456

6 Hypothetical protein (plasmid sequence) C!A L!M 562 SEEH8393_17461

6 Not annotated (plasmid sequence) G!A G!R n/a SEEH8393_contig56

6 Not annotated (plasmid sequence) C!T G!S n/a SEEHRA39_contig149

7 Type III secretion protein SopE T!A H!Q 560 SEEHRA37_14371

FIG. 4.—(A) Histogram showing the number of SNPs per core genes. (B) Histogram showing haplotype diversity for all variable, core genes.
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detected virulence genes, observed to be located on the

Salmonella pathogenicity islands (SPI-1, SPI-2, SPI-3, SPI-4,

and SPI-5), the lambda-like prophage Gifsy-2, and/or islets,

were present in all S. Heidelberg isolates, suggesting that all

isolates are pathogenic (supplementary table S2, Supplemen-

tary Material online). For example, all isolates carried a

chromosomal msgA gene, which is essential to Salmonella

mouse virulence (Gunn et al. 1995), and is common in S.

Typhimurium (Huehn et al. 2010). Other genes present

among all isolates encoded proteins involved in type III secre-

tion system (T3SS) and adhesins. Remarkably, the sopE1 viru-

lence gene, involved in the translocation of effector proteins
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FIG. 5.—Chromosome and plasmids features of a clinical S. Heidelberg isolate 41578. The circular map was drawn using dnaplotter. Different features

are shown in different colored bars. (A) Chromosome: The coding sequence are shown in dark blue, rRNA is shown in green, tRNA is shown in yellow,

prophages are shown in blue, and Salmonella pathogenicity islands are shown in red. Track 7 represents the GC content while Track 8 shows the GC skew

[(G�C)/G + C]. (B) IncI1 antimicrobial resistance plasmid: The coding sequences are shown in dark blue and resistance genes are shown in red. Track 5

shows the GC skew [(G�C)/G + C]. Regions of GC content above average of the plasmid are drawn outside the ring in yellow, whereas regions below

average are inside the ring in purple. (C) VirB/D4 virulence plasmid: The coding sequences are shown in dark blue, genes that carry the T4SS are shown in red,

genes responsible for plasmid stability, and replication is shown in green. Track 6 shows the GC skew [(G�C)/G + C]. Regions of GC content above average

of the plasmid are drawn outside the ring in yellow, whereas regions below average are inside the ring in purple.
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into host cells, was found in all of our strains. Moreover, al-

though sopE1 is known to be carried by P2-like phages, in this

study we also identified this gene on lambda-like phage Gifsy-

2, which is present in all S. Heidelberg isolates. Consequently,

all S. Heidelberg isolates have the sopE1 virulence gene. Group

3 isolates, which also contain the P2-like phage, have the

sopE1 gene twice in their chromosome; one gene is carried

by lambda-like phage Gifsy-2 and the other one is located on

the P2-like phage. Analysis confirmed that these two genes

shared a high degree of similarity having no more than eight

mutations between the two different sopE1 alleles. In con-

trast, virulence determinants known to be associated with

SPI-7, prophage Gifsy-1, Gifsy-3, Fels-1, and Salmonella plas-

mid virulence (spv) were not identified in any of the 44 isolates

examined in this study, confirming sequencing results that

none of the strains carried any of these mobile genetic

elements.

Description of VirB/D4 Plasmids

Several plasmids were found among the 44 S. Heidelberg

isolates sequenced in this study (table 1). Electrophoresis of

samples obtained using a basic alkaline plasmid purification

procedure demonstrated the presence of endogenous plas-

mids that had not integrated into the host genome (data not

shown). The plasmid sizes varied from 3.7 to over 200 kb.

Twenty-one S. Heidelberg isolates, including all five human

isolates and two ground turkey isolates associated with the

2011 outbreak, contained a plasmid ranging in size from 33 to

40 kb, which carried genes (virB1, virB2, virB3-4, virB5, virB6,

virB7, virB8, virB9, virB10, virB11, virD2, and virD4) associated

with the VirB/D4 T4SS (table 1). Three specific roles for the

bacterial T4SS have been identified: 1) to facilitate transloca-

tion of DNA via a conjugative mechanism to recipient cells; 2)

to facilitate translocation of effector molecules, such as pro-

teins, to eukaryotic target cells; and 3) to function in DNA

uptake or dissemination from or into the environment milieu

(Christie et al. 2005; Alvarez-Martinez and Christie 2009).

To further study the diversity among all 22 identified VB/D4

plasmids, we identified SNPs that might be useful in differen-

tiating these plasmids. The SNP matrix from the 22 plasmids

and the reference plasmid built using the k-mer strategy of

kSNP consisted of 338 informative SNP positions. Figure 6

shows a ML tree based on SNP analysis. The phylogeny

placed the VB/D4 plasmids into three well-supported clades

(95%, 100%, and 100% bootstrap support). Clade I con-

tained two plasmids isolated from the historical isolates,

SARA 37 and 82-2052, belonging to group 1 on the ML

tree shown in figure 3. Clade III is composed of ten plasmids,

including the reference plasmid pSARA30 and 9 isolates be-

longing to group 2 in figure 4. Clade II contains 11 plasmids,

including 7 plasmids from 7 isolates associated with the 2011

outbreak. Clade II can be further separated into two sub-

clades, one of which contains nine plasmids derived from

isolates belonging to group 3 in figure 4, while subclade 2

contains one clinical isolate and isolate N653, the unique iso-

late found to carry two VB/D4 plasmids (the other plasmid

partitioned into clade III). Moreover, using the primers de-

signed by Johnson et al. (2012) for the relaxase gene (taxC)

(VirD2 component) to screen for the four different IncX sub-

groups, we determined that the VB/D4 plasmids from clade I,

subclade 1 from clade II, and clade III belonged to the IncX1

plasmid subgroup, whereas the two plasmids from clade II

subclade 2 were deemed to be members of the IncX4

subgroup.

Interestingly, isolate N653 carried two plasmids, one being

in the IncX1 and another in the IncX4 incompatibility groups. It

appears that there are significant differences among these

groups that allow simultaneous maintenance of two plasmids

belonging to the same incompatibility group, a heretofore

believed unachievable occurrence. Given the notion that

two plasmids in the same Inc group cannot simultaneously

coexist within the same bacterium, another plausible explana-

tion could be that IncX4 might actually belong to a different

incompatibility group other than that of IncX1, which was

only previously experimentally confirmed to belong to IncX

(Norman et al. 2008). Consistent with this hypothesis was

the fact that a BLAST search with the IncX4 repA gene (pre-

sent only in both putative IncX4 plasmids) sequence identified

significant sequence similarity to only the Citrobacter roden-

tium ICC168 plasmid pCROD2 (previously grouped to IncX4

[Johnson et al. 2012]) and two plasmids from S. Heidelberg

(pSH163_34, pSH696_34), suggesting that the IncX4 group is

a new incompatibility group distinct from that of IncX1. If this

is confirmed to the case, coexistence of these two “IncX”

plasmids would be explained, although additional research

needs to be conducted to confirm this possibility.

In this study, eight of the plasmids carrying the VirB/D4

T4SS were completely sequenced including the two plasmids

from isolate, N653 (table 1). The annotated sequence dem-

onstrated that the eight plasmids carry, in addition to the VirB/

D4 T4SS systems, genes encoding other virulence-associated

determinants and several proteins involved in a variety of met-

abolic processes, for example, hemolysin expression-modulat-

ing gene ymoA, DNA-binding protein genes (hns), (stpA), the

toxin/antitoxin stability genes (stbE), (stbD), IncN plasmid Kika

gene (kika), and DNA topoisomerase III (topB).

A progressive Mauve alignment using the data from the

eight completely sequenced plasmids and the reference

S. Heidelberg plasmid pSARA30 (supplementary fig. S3,

Supplementary Material online) separated the plasmids into

three distinct groups. As expected, the plasmids partitioned in

different clades in the plasmid VirB/D4 ML tree (fig. 6) were

also found by Mauve analysis to belong to different groups.

Group 1 included plasmids isolated from S. Heidelberg SARA

31, SARA 32, N4403, and N653, all having a size of approx-

imately ~38.0 kb and showing the highest degree of sequence

similarity to the S. Heidelberg plasmid pSARA30. Unique to
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FIG. 6.—ML tree based for the 22 identified VB/D4 plasmids, including the reference S. Heidelberg plasmid pSARA30. A total of 338 SNPs with all being

informative, were found based on k-mer analysis using kSNP. The numbers of unambiguous substitutions that mapped to the tree only once are given above

each node. ML trees were generated as described in figure 3. Bootstrap values (1,000 iterations) are reported below each node.
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this group are several hypothetical proteins: truncated trans-

posase, DEAD/DEAH box helicase domain protein, and puta-

tive N-acetyltransferase. The second group is composed of the

plasmids isolated from S. Heidelberg 41573 (~38 kb) and

41563 (~33 kb)—both involved in the 2011 outbreak. The

best BLAST hit for them is Escherichia coli plasmid pDKX1-

TEM-52 (GenBank accession number: JQ269336). Attributes

unique to this group are several hypothetical proteins, a

replicon initiation protein, and an ATPase central domain-

containing protein. The third group contains plasmids isolated

from S. Heidelberg 41578, a 2011 outbreak clinical isolate,

and the chicken breast isolate N653. Both plasmids are ~35 kb

in size and members of the IncX4 subgroup. They share a high

degree of sequence similarity to C. rodentium ICC168 plasmid

pCROD2 (FN543504). Unique to this group are some meta-

bolic genes, such as putative toxin–antitoxin system genes

(hicA), (hicB), DnaJ-class molecular chaperone (dnaJ) (heat

shock protein), plasmid replication gene (repA), site-specific

recombinase (xerD), and acetyl-CoA carboxylase beta subunit

(accD). With regards to the VirB/D4 gene clusters found on the

IncX or IncX-like plasmids in this study, a considerable variation

was observed, sometimes having <55% sequence identity

between homologous genes (supplementary figs. S3 and

S4, Supplementary Material online), a phenomenon that has

been observed elsewhere among the Enterobacteriaceae

(Johnson et al. 2012). Comparison of the plasmids from the

three groups demonstrated that most of the T4SS-associated

genes divergence was seen in plasmids derived from group 3

isolates.

Noteworthy was the observation that three of these eight

plasmids, each isolated from different 2011 clinical outbreak

strains (41563 OR Blood, 41578 OH stool, 41573 OH Urine),

differed in DNA sequence and gene carriage, suggestive of

extensive horizontal gene transfer (HGT) or a mixed subpop-

ulation of S. Heidelberg isolates.

Caenorhabditis elegans System

To answer the question whether the isolates that contain the

VirB/D4 plasmid are more virulent, we performed a survival

assay using a C. elegans system to compare the virulence po-

tential of our strains. This system has been used successfully as

an invertebrate host model to assess the virulence determi-

nants of human pathogens, such as Vibrio cholerae (Sahu

et al. 2012) and S. Typhimurium (Aballay et al. 2000). We

tested six different S. Heidelberg isolates (four ground turkey

isolates, one swine isolate, and one clinical outbreak isolate)

having different plasmid profiles. Strain 29169 singly carries a

small mobilization plasmid; strain SARA 31 carries only the

VirB/D4 T4SS plasmid; strain 418 carries a small mobilization

plasmid and an IncA/C plasmid; strain 41565 carries a small

mobilization plasmid and an IncHI2 plasmid; strain 41578 has

a small mobilization plasmid, the VirB/D4 T4SS plasmid, and

an IncI1 plasmid; and N30678 has four plasmids: the small

mobilization plasmid, the VirB/D4 T4SS plasmid, the IncI1, and

the IncHI1. Except SARA 31, in which phage P4 and P2-like

were not present, all other isolates had the same phage

profile.

The results, which showed that S. Heidelberg isolates are

significantly (P< 0.0001) more pathogenic than the E. coli OP

50 control strain, failed to demonstrate any appreciable dif-

ference in pathogenicity between strains carrying the VirB/D4

T4SS plasmid and those strains that did not (fig. 7). However,

we also identified some VirB/D4 T4SS components on the

resistance plasmids IncA/C, IncHI2, and IncI1. Interestingly,

isolate 29169, which did not carry any large plasmid and

any of the T4SS components, was found to be significantly

(P< 0.0001) less pathogenic using this assay than any of the

other isolates evaluated. Isolate 41565, which carried the

small mobility plasmid as well as additional IncHI2 plasmid,

demonstrated the second weakest pathogenic potential.

Isolate SARA 31, which carried the VB/D4 T4SS plasmid but

no other resistance plasmid, showed a survival curve profile

similar to that of isolate N418, which did not have the VB/D4

T4SS plasmid but carried the IncA/C plasmid.

The highest degree of pathogenicity was seen in N30678,

which carries four plasmids including resistance and VB/D4

plasmids, and it is significantly (P<0.05) different from all

other isolates except the clinical outbreak isolate 41578,

which also consist resistance and VB/D4 plasmids (fig. 7).

The data show that isolates not carrying any T4SS components

tend to be significant less (P< 0.0001) pathogenic than those

isolates that do carry the VB/D4 T4SS plasmid. Moreover,

those strains that carry both the VB/D4 T4SS plasmid and an

antibiotic resistance plasmid, which also carries the T4SS

genes, demonstrated a pathogenic potential greater than iso-

lates carrying only one of these plasmids.

FIG. 7.—Caenorhabditis elegans survival data from six S. Heidelberg

isolates. The figure shows that the six S. Heidelberg isolates (29169,

SARA 31, 418, 41565, 41578, and N30678) are significantly

(P< 0.0001) more pathogenic than the Escherichia coli OP 50 control

strain. Further the figures show that isolates not carrying any T4SS com-

ponents tend to be significant less pathogenic than those isolates that do

carry them.
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Identification of Antimicrobial Resistance Genes and
Plasmids

Analysis of WGS data showed 27 plasmid-associated antibi-

otic resistance genes among the 44 isolates and included

genes expected to produce resistance to aminoglycosides,

beta-lactams, phenicols, folate pathway inhibitors, tetracy-

clines, and cephems. These genes were not detected in the

eight pan susceptible isolates that also did not carry any of the

antibiotic resistance plasmids. Resistance phenotypes corre-

lated with genotypes in all strains examined (table 4).

However, some strains with the same genotype exhibited dif-

ferent antimicrobial resistance patterns. For example, both

strains N18440 and N18413 contain the aadA1 gene but

only isolate N18440 showed resistance to streptomycin. In

this study, streptomycin resistance was defined using the

MIC value >32 mg/l determined by CLSI. However, studies

have shown that strains harboring an aadA gene cassette

can have MICs of 16 mg/l, which would classify these strains

as streptomycin-susceptible (Sunde and Norström 2005).

Among the 36 S. Heidelberg isolates resistant to one or

more antibiotics, 24 contained sequences indicative of pres-

ence of an IncI1 plasmid, 5 had an IncHI2 plasmid, and 1

carried an IncA/C plasmid. Three isolates contained two plas-

mids, one with IncI1 + IncHI2, and two isolates each having

IncI1 + IncA/C replicons (table 4). Besides isolate 41565, which

carries an IncHI2 plasmid, all Heidelberg isolates associated

with 2011 outbreak carry an IncI1 plasmid, which was de-

tected the most overall among our strains. The IncI1 plasmid

carries several antibiotic resistance genes and components of

the T4SS. The IncHI2 plasmid was found in eight isolates and

carries several antibiotic resistance genes and genes conferring

resistance to quaternary ammonium compounds, as well as

genes encoding the conjugative T4SS. Furthermore, unique to

the IncHI2 plasmid is the presence of genes encoding resis-

tance to heavy metals, including tellurium, copper, cadmium,

mercury, and silver.

The three isolates resistant to the most (ten or more) anti-

biotics carried the IncA/C multidrug resistance plasmid. In ad-

dition to carrying the genes encoding resistance to different

antibiotics and quaternary ammonium compounds, this plas-

mid also carries the conjugative T4SS transfer system. All three

IncA/C plasmids carried the resistance element blaCMY-2-blc-

sugE2, which was only found in one other isolate, N189, on

an IncI1 plasmid.

SARA 35, which was only resistant to ampicillin, did not

carry a multidrug resistance plasmid but, instead, carried a

smaller plasmid (~8.0 kb) having only a single determinant

that correlated with resistance to b-lactams (tnpA-blaTEM-1).

This plasmid shared a high degree of sequence similarity to

S. Typhimurium pAnkS (accession number: DQ916413),

which also carried the transposon resistance element (tnpA-

blaTEM-1). The Inc group for this plasmid could not be deter-

mined from the sequence.

Figure 8 shows a neighbor-joining tree generated from a

presence/absence matrix of resistance genes for the 30 group

3 Heidelberg isolates having a common PFGE profile. As ex-

pected, resistance tended to segregate according to the par-

ticular Inc group plasmid they carried and not by clonality or

evolutionary relationship. This observation indicated that the

presence of specific resistance genes correlates with the par-

ticular Inc group of the plasmids. For example, the resistance

genes (aphA1, blaCMY2, sul2, cmlA1, floR) were only detected

in isolates that carry an IncA/C plasmid, whereas only isolates

carrying an IncHI2 plasmid were found to contain the resis-

tance genes aph, sph, tetC, tetD, and ble. Similarly, the aacC

gene only appears to be present in those isolates identified as

carrying an IncI1 plasmid. The association of different resis-

tance genes with specific Inc groups is well known.

Mobilization Plasmids

Plasmids below 8 kb did not carry any antimicrobial resistance

or virulence-associated genes. Instead, these smaller plasmids

tended to carry genes capable of promoting plasmid mobili-

zation, such as the mbeA, mbeB, mbeC, mbeD genes.

S. Heidelberg isolates N189, N653, and N4403, which were

originally isolated from chicken breast, carry a small, 3,772 bp

plasmid that is identical to the S. Heidelberg SL476 plasmid

pSL476_3 (GenBank accession number: CP001119) (Fricke

et al. 2011). All group 3 isolates (fig. 3), except isolate

24393, have similar XbaI patterns (JF6X01.0032,

JF6X01.0033, JF6X01.0034, JF6X01.0058), and carry a

4,473 bp plasmid that shares high sequence similarity with

the S. Heidelberg plasmid pSH1148_4.8 (GenBank accession

number: JX494965). SARA 35, which was isolated in Brazil,

was found to carry a 6,647 bp ColE1 plasmid

(pCFSAN000443_01) that is similar to E. coli plasmid ColE1

(GenBank accession number: J01566).

Discussion

Within the last several years, S. Heidelberg has been identified

as one of the top serovars responsible for human illness, in-

cluding a recent multistate outbreak of an antibiotic-resistant

strain associated with consumption of contaminated ground

turkey. Using whole-genome sequences, we characterized the

genetic diversity of 46 S. Heidelberg isolated over ~30 years.

This study illustrates the novel ways in which WGS, combined

with phylogenetic analysis, can be used to investigate and

characterize the diversity of S. Heidelberg. Using this strategy

with outbreak isolates, we were also able to comprehensively

characterize and differentiate among highly clonal

S. Heidelberg isolates. For example, SNP analysis in combina-

tion with phylogenetic analysis is able to determine the phy-

logenetic relationships among S. Heidelberg isolates, easily

separating them from other S. Heidelberg strains, including

isolates having the same XbaI and BlnI PFGE patterns and

thought to be highly clonal.
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FIG. 8.—Absence and presence tree of resistance genes among S. Heidelberg isolates associated with paraphyletic group 3. It is a similarity tree based on

binary distances under neighbor-joining algorithm for tree construction. The resistance genes and incompatibility group of the resistance plasmid are mapped

to the tree.
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We also found that the SNP analysis clustered isolates

together that did not have the same PFGE profiles, such as

the 2011 outbreak isolates, which were distinct on the PFGE

two-enzyme dendrogram. SNP analysis tightly clustered

the clinical and ground turkey outbreak isolates together

and distinguished these from other apparently clonal iso-

lates that shared the same PFGE and antibiotic resistance pro-

files. This result confirms the epidemiological data that the

clinical and ground turkey isolates belong to the same out-

break, and are separate from other strains grouped with them

by PFGE.

We found two nonsynonymous SNPs that were present

only among the outbreak isolates. The first of these SNPs

was found to be located on the gluconate transporter gntP

gene. The biological role of GntP might be to permit the host

to take up gluconate when only tiny amounts are present,

thereby conferring an advantage to the host in a competitive

environment (Klemm et al. 1996). The second of these SNPs

was located within a gene encoding a putative hydrolase

(phosphoserine phosphatase). This gene is involved in glycine

and serine metabolism, and resulted in a proline to glutamine

amino acid change that is known to change the secondary

structure of this enzyme.

SNP-based phylogeny clearly has a distinct advantage in

subtyping clonal isolates because the method offers nucleo-

tide base resolution. We detected 4,053 SNPs within highly

clonal S. Heidelberg isolates. Compared with the PFGE analy-

ses that grouped isolates together having the same Xbal and

BlnI patterns, the resolution of the SNP phylogeny conclusively

demonstrated that genome sequencing distinguishes be-

tween outbreak and nonoutbreak isolates that shared the

same XbaI and BlnI patterns. The results from the ML tree

generated from the SNP matrix constructed with kSNP are

concordant with those observed based on the SNP matrix

developed with our custom pipeline. The study showed that

SNP analysis is very consistent and reliable, confirming that

even when different methods were used to identify SNPs,

there are no appreciable changes in the overall phylogeny of

the strains included in the analyses.

Only a few mutation “hotspot” genes were found to have

a disproportional number of SNPs and that might serve as

targets useful for rapidly subtyping serovar Heidelberg.

Although these genes have several SNPs, the haplotype diver-

sity is fairly low, indicating there are only few unique

sequences among S. Heidelberg. This information supports

the value of SNP analysis as a useful tool for subtyping this

serovar.

WGS data and comparative genomics not only offer a

useful subtyping method to differentiate closely related bac-

teria, but they also provide a better understanding of patho-

genicity and evolution. Our results show substantial loss and

gain of plasmids and phages between these S. Heidelberg

isolates that were consistent with previously generated tree

topologies. The phages found among these strains are known

to carry cassette genes (morons) encoding factors that en-

hance the proliferation and dissemination of the prophage

by improving the fitness and /or virulence of the lysogen

(Boyd and Brussow 2002; Pelludat et al. 2003). This possibility

has led to the assumption that phage-mediated distribution of

virulence factors and fitness factors is a key driving force in the

optimization of Salmonella–host interactions and the emer-

gence of new epidemic clones (Brussow et al. 2004). For ex-

ample, lambda-like phage Gifsy-2, which is present among all

S. Heidelberg isolates examined in the study, carries the viru-

lence factor periplasmic CuZn-superoxide dismutase (SodCI),

an enzyme that has the potential to enhance the fitness of a

Gifsy-2 lysogen (Brussow et al. 2004). Moreover, the pro-

phage P4 and prophage P2-like were associated with isolates

from group 3 which included the outbreak isolates. The P2-

like phage carries the sopE1 gene that encodes part of the

T3SS that translocates bacterial effector proteins directly into

the cytosol of host cells. The phage P2-like has also been

identified in S. Typhimurium strain DT49/DT204 that caused

a major outbreaks in Europe in 1970s and 1980s. It has been

speculated that lysogenic conversion with sopE1 was an im-

portant step in the emergence of this epidemic strain (Mirold

et al. 2001). Interestingly, Mirold et al. reported that sopE1 is

not restricted to a certain bacteriophage as a “vehicle,” iden-

tifying sopE1 in other serovars present on a Gifsy-like phage

(Mirold et al. 2001). We also saw the same phenomenon

among the S. Heidelberg of this study where the sopE1

gene, which was found to be present among all isolates,

was carried by both the P2-like and the lambda-like Gifsy-2

phages.

The exchanges of genetic cassettes between unrelated

phages further increase the degree of HGT noted among

S. Heidelberg strains, clearly demonstrating the importance

of phages in the emergence and evolution of Salmonella path-

ogens. To date, this is the first time that phages have been

characterized by name among S. Heidelberg isolates and that

a P2-like phage was identified in S. Heidelberg that carries the

sopE1 gene. This phage and, subsequently, the sopE1 deter-

minant, was present in the outbreak isolates, possibly serving

as one of the virulence factors giving rise to these pathogens.

Furthermore, we identified the presence of 74 virulence de-

terminants in all S. Heidelberg isolates.

In the course of performing this study, both newly se-

quenced plasmids and plasmids sharing a high sequence sim-

ilarity to previously described plasmids (Han et al. 2012) were

identified. Similar to the phage presence and absence tree

topology previously described, the mobilization plasmids ab-

sence/presence seemed to correlate with the tree topology

according to the plasmid(s) they carried. For instance, the

3,772 bp mobilization plasmid was only identified in isolates

belonging to paraphyletic group 2, whereas the 4,473 bp plas-

mid was found only in isolates which belong to the paraphy-

letic group 3 on the ML tree. The mobilization plasmids carry

the genes necessary to encode the proteins involved with
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relaxosome formation and processing. Moreover, these plas-

mids are efficiently transferred by other plasmids, such as IncI1

and IncX (Francia et al. 2004), two plasmids frequently found

among the S. Heidelberg in this and other studies (Folster et al.

2012; Han et al. 2012). The mobilization plasmids tend to be

retained and are, continually carried by specific groups of

S. Heidelberg isolates, suggesting that they must play an es-

sential role in this serovar survival, although the precise role is

unclear. Plasmid sequence analysis detected additional plas-

mids that encode several S. Heidelberg virulence determi-

nants, including T4SS and antibiotic resistance genes. Unlike

the smaller plasmids, the loss and gain of the larger plasmids

(ranging from 33 to >200 kb) did not correlate with the tree

topology. The plasmid analyses performed in this and previous

studies (Folster et al. 2012; Han et al. 2012) demonstrated that

S. Heidelberg isolates have at least four transmissible plasmids,

including an IncA/C, IncI, and IncHI2 and IncX plasmid. The

IncA/C, IncI, and IncHI2 plasmids carry genes that are impor-

tant for virulence, colonization, and persistence, as well as

those encoding resistance determinants to heavy metals, dis-

infection, and antimicrobial agents. We determined that most

of the antimicrobial-resistance phenotypes could be ac-

counted for by resistance genes carried on plasmids. We did

not identify an instance of resistance occurring in the absence

of a corresponding gene. This shows that genetic prediction of

phenotypic resistance may be possible and may become

necessary as clinical diagnostics moves toward culture-

independent technologies. More studies are necessary to de-

termine how well specific DNA sequences, and combinations

of sequences, predict resistance or susceptibility to various

antimicrobial agents.

Besides the IncI1 and the IncHI2 antibiotic resistance plas-

mids, an IncX plasmid that encodes the structural components

of the VirB/D4 T4SS apparatus was detected in most of the

outbreak isolates. The VirB/D4 T4SS apparatus is important in

that it assists with “rapid dissemination of antibiotic resistance

and virulence determinants” (Bhatty et al. 2013). Unlike other

secretion systems, the T4SS is not only capable of acting in a

conjugative fashion disseminating DNA to other bacteria,

thereby contributing to genome plasticity and the evolution

of infectious pathogens through dissemination of antibiotic

resistance and virulence genes, but also capable of transfer-

ring protein effectors across both the bacterial and eukaryotic

plasma membrane directly into the cytosol of the target cells,

thereby contributing directly to bacterial pathogenicity (Juhas

et al. 2008; Gokulan et al. 2013). The T4SS was first described

for Agrobacterium tumefaciens and consists of 11 proteins

encoded by the virB gene complex. Of particular interest

was the fact that some plasmids carrying the T4SS, such as

those of the IncX group, also carry systems that confer plasmid

stability among the strains possessing the plasmid. For in-

stance, the IncX plasmids carry the toxin–antitoxin system

genes (hicA), (hicB), as well as the toxin/antitoxin stability

genes (stbE), (stbD), both of which contribute to the plasmid

stability to assure that the plasmid as well as its associated

virulence determinants are inherited by all bacterial progeny

(Yamaguchi and Inouye 2011; Unterholzner et al. 2013). As

such, these genes serve to stabilize the “pathogenic poten-

tial” of these isolates.

Finding that the T4SS system was present in the majority of

the pathogenic isolates and carried on plasmids also bearing

determinants associated with assuring vertical transmission of

the plasmid to progeny bacteria, we sought to assess the role

of the T4SS in overall pathogenicity. Using the C. elegans vir-

ulence assay, we confirmed that S. Heidelberg isolates that

carried components of the T4SS were more pathogenic in this

model than isolates that did not carry the system, suggesting

the T4SS plays a role in the pathogenicity of S. Heidelberg.

Much more inclusive investigations must be performed to fully

understand the role of plasmid-encoded genes in pathogen-

esis, with special emphasis on the role of virulence-associated

VirB/D4 T4SS secretory mechanism.

In summary, the data presented in this study support the

role of transmissible mobile genetic elements in the evolution

of virulence and resistance among S. Heidelberg. Understand-

ing the results and the role of these elements is very important

since S. Heidelberg is the second most common serovar, fol-

lowing S. Typhimurium, responsible for Salmonella-related

deaths in the United States (Kennedy et al. 2004; Patchanee

et al. 2008). Although the mechanisms responsible for

S. Typhimurium pathogenicity and colonization are well stud-

ied, fewer studies are available for S. Heidelberg (Han et al.

2011). Presumably, the transmissible plasmids identified in our

strain set play a major role in the spread of virulence and

resistance genes among S. Heidelberg and, most likely,

other Salmonella serovars.

The results from this and other studies suggest that plas-

mids are being exchanged quickly. For example, it was noted

that some strains associated with the 2011 outbreak isolated

from the same state had different plasmid profiles. In addition

to the ecological benefits conferred as a consequence of

this rapid plasmid exchange, large plasmids can change

PFGE patterns. We noted that, while most of the se-

quenced isolates associated with the 2011 outbreak had

BlnI PFGE pattern JF6A26.0076, a single isolate, 41565, had

a different, JF6A26.0017 BlnI pattern, most likely due to

the presence of an IncHI2 plasmid rather than IncI1. Other

closely related isolates not associated with the outbreak car-

rying the IncHI2 plasmid also exhibited BlnI PFGE pattern

JF6A26.0017.

The results determined in this study have convincingly

shown that WGS analysis could be a useful tool for identifying

the source of contamination and studying the short-term evo-

lution of these epidemic clones. In the context of the 2011

ground turkey-associated outbreak, SNP analysis provided an

excellent tool for subtyping S. Heidelberg and clustering clo-

sely related isolates together. Using these data, we deter-

mined that the antibiotic-resistant outbreak isolates diverged
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from environmental isolates through the gain of several viru-

lence factors, such as sopE1 gene carried on Phage P2 or the

T4SS system carried on the IncX plasmid. Of particular interest,

other isolates in paraphyletic group 3 on the ML tree carried

the same virulence factors as the 2011 outbreak strain, sug-

gesting that this strain has been seen earlier in the environ-

ment and that the outbreak occurred as a consequence of

changes in outside influences such as the dose or the handling

of the food.

CDC projected that for every case of Salmonella reported

that 29.3 cases occur in the community and 28.3 cases goes

undiagnosed or unreported (Scallan et al. 2011), suggesting

that the 2011 outbreak actually may have sickened over

4,000 people in the United States. The World Health

Organization has declared that most countries have docu-

mented a significant increase of microorganism-mediated

foodborne illnesses (WHO 2013). Therefore, it is paramount

to have a robust identification system that can distinguish

closely related strains in an outbreak situation. To date,

DNA “fingerprinting” facilitated by PFGE at PulseNet has

often been used to establish the source of clinical isolates.

However, several examples in the past have shown that PFGE

may not be as useful for some serotypes that show less di-

versity by PFGE (CDC 2010a, 2010b). Therefore, it is essential

to develop and evaluate other methods for their ability to

effectively and accurately discriminate outbreak isolates

from nonoutbreak isolates, like the combination of WGS

and computationally efficient methods of analysis. Such a

combination of approaches also will help to genetically link

the implicated food sources of contamination with farm or

factories. As more WGS data are gathered and analytical

tools developed in combination with epidemiology investiga-

tions, we anticipate significant improvements in timeliness of

outbreak investigations and attribution of human infections

to specific sources.

Supplementary Material

Supplementary tables S1 and S2 and figures S1–S4 are avail-

able at Genome Biology and Evolution online (http://www.

gbe.oxfordjournals.org/).
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